Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Med Chem ; 66(4): 3088-3105, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: covidwho-2265584

RESUMEN

Interest in covalent enzyme inhibitors as therapeutic agents has seen a recent resurgence. Covalent enzyme inhibitors typically possess an organic functional group that reacts with a key feature of the target enzyme, often a nucleophilic cysteine residue. Herein, the application of small, modular ReV complexes as inorganic cysteine-targeting warheads is described. These metal complexes were found to react with cysteine residues rapidly and selectively. To demonstrate the utility of these ReV complexes, their reactivity with SARS-CoV-2-associated cysteine proteases is presented, including the SARS-CoV-2 main protease and papain-like protease and human enzymes cathepsin B and L. As all of these proteins are cysteine proteases, these enzymes were found to be inhibited by the ReV complexes through the formation of adducts. These findings suggest that these ReV complexes could be used as a new class of warheads for targeting surface accessible cysteine residues in disease-relevant target proteins.


Asunto(s)
COVID-19 , Proteasas de Cisteína , Inhibidores de Cisteína Proteinasa , Cisteína , Renio , SARS-CoV-2 , Humanos , Proteasas de Cisteína/metabolismo , Inhibidores Enzimáticos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Cisteína Proteinasa/uso terapéutico
2.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1319012

RESUMEN

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Asunto(s)
Aldehídos/química , Tratamiento Farmacológico de COVID-19 , Enfermedad de Chagas/tratamiento farmacológico , Inhibidores de Cisteína Proteinasa/uso terapéutico , SARS-CoV-2/enzimología , Trypanosoma cruzi/enzimología , Aldehídos/metabolismo , Aldehídos/farmacología , Catepsina L/antagonistas & inhibidores , Catepsina L/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/química , Diseño de Fármacos , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , SARS-CoV-2/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacos
3.
Int J Biol Macromol ; 183: 182-192, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1305238

RESUMEN

After the emergence of the pandemic, repurposed drugs have been considered as a quicker way of finding potential antiviral agents. SARS-CoV-2 3CLpro is essential for processing the viral polyproteins into mature non-structural proteins, making it an attractive target for developing antiviral agents. Here we show that Vitamin K3 screened from the FDA-Approved Drug Library containing an array of 1,018 compounds has potent inhibitory activity against SARS-CoV-2 3CLpro with the IC50 value of 4.78 ± 1.03 µM, rather than Vitamin K1, K2 and K4. Next, the time-dependent inhibitory experiment was carried out to confirm that Vitamin K3 could form the covalent bond with SARS-CoV-2 3CLpro. Then we analyzed the structure-activity relationship of Vitamin K3 analogues and identified 5,8-dihydroxy-1,4-naphthoquinone with 9.8 times higher inhibitory activity than Vitamin K3. Further mass spectrometric analysis and molecular docking study verified the covalent binding between Vitamin K3 or 5,8-dihydroxy-1,4-naphthoquinone and SARS-CoV-2 3CLpro. Thus, our findings provide valuable information for further optimization and design of novel inhibitors based on Vitamin K3 and its analogues, which may have the potential to fight against SARS-CoV-2.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/química , SARS-CoV-2/enzimología , Vitamina K 3 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Humanos , Vitamina K 3/análogos & derivados , Vitamina K 3/química , Tratamiento Farmacológico de COVID-19
4.
Curr Opin Virol ; 49: 36-40, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1201247

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. The coronavirus 3-chymotrypsin-like protease (3CLpro) controls virus replication and is therefore considered a major target and promising opportunity for rational-based antiviral discovery with direct acting agents. Here we review first-generation SARS-CoV-2 3CLpro inhibitors PF-07304814, GC-376, and CDI-45205 that are being delivered either by injection or inhalation due to their low intrinsic oral bioavailability. In addition, PF-07321332 is now emerging as a promising second-generation clinical candidate for oral delivery. A key challenge to the development of novel 3CLpro inhibitors is the poor understanding of the predictive value of in vitro potency toward clinical efficacy, an issue complicated by the involvement of host proteases in virus entry. Further preclinical and clinical validation will be key to establishing 3CLpro inhibitors as a bona fide class for future SARS-CoV-2 therapeutics for both hospitalized and outpatient populations.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Antivirales/uso terapéutico , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Vías de Administración de Medicamentos , Desarrollo de Medicamentos , Descubrimiento de Drogas , Humanos , SARS-CoV-2/enzimología
5.
Molecules ; 26(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1100140

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged to be the greatest threat to humanity in the modern world and has claimed nearly 2.2 million lives worldwide. The United States alone accounts for more than one fourth of 100 million COVID-19 cases across the globe. Although vaccination against SARS-CoV-2 has begun, its efficacy in preventing a new or repeat COVID-19 infection in immunized individuals is yet to be determined. Calls for repurposing of existing, approved, drugs that target the inflammatory condition in COVID-19 are growing. Our initial gene ontology analysis predicts a similarity between SARS-CoV-2 induced inflammatory and immune dysregulation and the pathophysiology of rheumatoid arthritis. Interestingly, many of the drugs related to rheumatoid arthritis have been found to be lifesaving and contribute to lower COVID-19 morbidity. We also performed in silico investigation of binding of epigallocatechin gallate (EGCG), a well-known catechin, and other catechins on viral proteins and identified papain-like protease protein (PLPro) as a binding partner. Catechins bind to the S1 ubiquitin-binding site of PLPro, which might inhibit its protease function and abrogate SARS-CoV-2 inhibitory function on ubiquitin proteasome system and interferon stimulated gene system. In the realms of addressing inflammation and how to effectively target SARS-CoV-2 mediated respiratory distress syndrome, we review in this article the available knowledge on the strategic placement of EGCG in curbing inflammatory signals and how it may serve as a broad spectrum therapeutic in asymptomatic and symptomatic COVID-19 patients.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa , SARS-CoV-2/enzimología , Té/química , Antivirales/química , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/enzimología , COVID-19/epidemiología , Catequina/química , Catequina/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Humanos
6.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1090312

RESUMEN

Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC50 values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R2 = 0.897, Q2LOO = 0.854, and Q2ext = 0.876 and complying with all the parameters established in the validation Tropsha's test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC50 value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC50 values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.


Asunto(s)
Antivirales/química , COVID-19/enzimología , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/química , Bases de Datos de Compuestos Químicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN , SARS-CoV-2/enzimología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Evaluación Preclínica de Medicamentos , Relación Estructura-Actividad Cuantitativa , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , Tratamiento Farmacológico de COVID-19
7.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1090311

RESUMEN

The ongoing coronavirus pandemic has been a burden on the worldwide population, with mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned from the SARS outbreak of 2002-2004, caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2 both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro), which play a significant role in facilitating viral replication, and are important drug targets. The non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2 PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features are instrumental in the design and development of more potent PLpro inhibitors. In this work, we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that showed the most favourable predicted binding affinities to the target site, as well as comparable protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-seven analogues of this compound were further docked against the PLpro, which resulted in two additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking, (3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic, scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space, which may be further explored in vitro through structure-activity relationship (SAR) studies in the search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based virtual screen performed against GRL-0617.


Asunto(s)
Antivirales/química , COVID-19/enzimología , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/química , Simulación del Acoplamiento Molecular , SARS-CoV-2/enzimología , Antivirales/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Tratamiento Farmacológico de COVID-19
8.
Front Cell Infect Microbiol ; 10: 589505, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1000069

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemics is a challenge without precedent for the modern science. Acute Respiratory Discomfort Syndrome (ARDS) is the most common immunopathological event in SARS-CoV-2, SARS-CoV, and MERS-CoV infections. Fast lung deterioration results of cytokine storm determined by a robust immunological response leading to ARDS and multiple organ failure. Here, we show cysteine protease Cathepsin L (CatL) involvement with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 from different points of view. CatL is a lysosomal enzyme that participates in numerous physiological processes, including apoptosis, antigen processing, and extracellular matrix remodeling. CatL is implicated in pathological conditions like invasion and metastasis of tumors, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, viral infection, and other diseases. CatL expression is up-regulated during chronic inflammation and is involved in degrading extracellular matrix, an important process for SARS-CoV-2 to enter host cells. In addition, CatL is probably involved in processing SARS-CoV-2 spike protein. As its inhibition is detrimental to SARS-CoV-2 infection and possibly exit from cells during late stages of infection, CatL could have been considered a valuable therapeutic target. Therefore, we describe here some drugs already in the market with potential CatL inhibiting capacity that could be used to treat COVID-19 patients. In addition, we discuss the possible role of host genetics in the etiology and spreading of the disease.


Asunto(s)
COVID-19/complicaciones , Catepsina L/fisiología , Pandemias , Síndrome de Dificultad Respiratoria/enzimología , SARS-CoV-2/fisiología , Lesión Renal Aguda/etiología , Amantadina/uso terapéutico , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , Catepsina L/antagonistas & inhibidores , Catepsina L/genética , Cloroquina/uso terapéutico , Inhibidores de Cisteína Proteinasa/uso terapéutico , Predisposición Genética a la Enfermedad , Heparina/uso terapéutico , Humanos , Hidroxicloroquina/uso terapéutico , Lisosomas/enzimología , Terapia Molecular Dirigida , Receptores Virales/metabolismo , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2/ultraestructura , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Teicoplanina/uso terapéutico , Internalización del Virus , Tratamiento Farmacológico de COVID-19
9.
Bioorg Chem ; 104: 104257, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-739774

RESUMEN

BACKGROUND: Oseltamivir is a first-line antiviral drug, especially in primary hospitals. During the ongoing outbreak of coronavirus disease 2019 (COVID-19), most patients with COVID-19 who are symptomatic have used oseltamivir. Considering its popular and important role as an antiviral drug, it is necessary to evaluate oseltamivir in the treatment of COVID-19. OBJECTIVE: To evaluate the effect of oseltamivir against COVID-19. METHODS: Swiss-model was used to construct the structure of the N-terminal RNA-binding domain (NRBD) of the nucleoprotein (NC), papain-like protease (PLpro), and RNA-directed RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). TM-align program was performed to compare the structure of the viral proteins with the structure of the neuraminidase of influenza A. Molecular docking was used to analyze the theoretical possibility of effective binding of oseltamivir with the active centers of the viral proteins. In vitro study was used to evaluate the antiviral efficiency of oseltamivir against SARS-CoV-2. By clinical case analysis, we statistically evaluated whether the history of oseltamivir use influenced the progression of the disease. RESULTS: The structures of NRBD, PLpro, and RdRp were built successfully. The results from TM-align suggested that the S protein, NRBD, 3C-like protease (3CLpro), PLPrO, and RdRp were structurally similar to the influenza A neuraminidase, with TM-scores of 0.30077, 0.19254, 0.28766, 0.30666, and 0.34047, respectively. Interestingly, the active center of 3CL pro was found to be similar to the active center from the neuraminidase of influenza A. Through an analysis of molecular docking, we discovered that oseltamivir carboxylic acid was more favorable to bind to the active site of 3CLpro effectively, but its inhibitory effect was not strong compared with the positive group. Finally, we used in vitro study and retrospective case analysis to verify our speculations. We found that oseltamivir is ineffective against SARS-CoV-2 in vitro study and the clinical use of oseltamivir did not improve the patients' symptoms and signs and did not slow the disease progression. CONCLUSIONS: We consider that oseltamivir isn't suitable for the treatment of COVID-19. During the outbreak of novel coronavirus, when oseltamivir is not effective for the patients after they take it, health workers should be highly vigilant about the possibility of COVID-19.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Oseltamivir/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Adulto , Anciano , Animales , Antivirales/química , Antivirales/metabolismo , Dominio Catalítico , Chlorocebus aethiops , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Oseltamivir/química , Oseltamivir/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Estudios Retrospectivos , Células Vero
10.
ACS Infect Dis ; 6(7): 1548-1552, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: covidwho-208479

RESUMEN

Novel beta-coronavirus SARS-CoV-2 is the pathogenic agent responsible for coronavirus disease-2019 (COVID-19), a globally pandemic infectious disease. Due to its high virulence and the absence of immunity among the general population, SARS-CoV-2 has quickly spread to all countries. This pandemic highlights the urgent unmet need to expand and focus our research tools on what are considered "neglected infectious diseases" and to prepare for future inevitable pandemics. This global emergency has generated unprecedented momentum and scientific efforts around the globe unifying scientists from academia, government and the pharmaceutical industry to accelerate the discovery of vaccines and treatments. Herein, we shed light on the virus structure and life cycle and the potential therapeutic targets in SARS-CoV-2 and briefly refer to both active and passive immunization modalities, drug repurposing focused on speed to market, and novel agents against specific viral targets as therapeutic interventions for COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Enfermedades Desatendidas/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Animales , Betacoronavirus/química , COVID-19 , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Ratones , Neumonía Viral/fisiopatología , Neumonía Viral/virología , ARN Viral/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas Virales/inmunología , Vacunas Virales/uso terapéutico , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA